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Recap Security Protocols

We have defined

* the Dolev-Yao adversary
 communicating agents that follow a role specification

* and the security properties desired
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What we have not seen

M

\/

We glossed over that

 a human is one of the communicating parties,
* humans have limited computational abilities, and

* they are error-prone.
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How can we achieve secure communication
between a human and a remote server?

new problem Polev-Yao:
under control

 Examples: Online Banking, Internet Voting,
Electronic Tax Returns, ...

e How do we model and reason about Iinteraction
between humans and computers?
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How can we achieve secure communication
between a human and a remote server?

ﬁ)gﬁ

additional problewm:
comprowmised platform

e |f platform is compromised: no useful secure
communication is possible.

* A trusted device is necessary.




Human H Platform P Server S

For which kinds of devices is
( ) secure communication possible?

(A Complete Characterization of Secure Human-Server
Communication, CSF 2015)

- S/

Device D Focus In this talk on human errors
(Modeling Human Errors in Security Protocols, CSF 2016)

Possible “devices’:



http://people.inf.ethz.ch/basin/pubs/human-csf15.pdf
http://people.inf.ethz.ch/basin/pubs/human-csf15.pdf

Overview

1. Security protocol model
2. Modelling Human Error

3. Applications



Security Protocol Model — Tamarin

« Symbolic formal model specitied using multiset rewriting

 Dolev-Yao adversary controlling communication network.

e Possible executions
modeled by traces

 Tool support

Running Tuuey 1.0.0

Proof scripts

lemma functional [left]:
exists-trace
"(V H1 H2 #i #j.
((Setup( H1 ) @ #i) A (Setup( HZ ) @ #j)) = (#i = #3)) A
(3 #k #n D. (Dfin( ) @ #k) A (SC 'Human', D ) €@ #n))"
simplify
solve( AgSt_DA( $0, 'D_@', <SH, $S> ) Pe #k )
case Setup
solve( In_SC $H, SD, 'vote', Svotel ) b1 #k )
case ChanIn_S
solve( AgSt_S@( $S.1, 'S_@', <'Human', $D.1>
D) Pa#n)
case Setup
solve( In_SC S0, $S, 'vote',
<'Human', Svotel.l>
) Ps#n)
case ChanIn_S
solve( !Sec( "Human', $D, 'vote', Svotel
) Pe #ivr.1)
case ChanQut_S_case_1
solve( !SecC $D, $S, 'vote',
<'Human', $votel.l>
) Pe #vr.2)
case ChanQut_S_case_1
SOLVED // trace found

qed
qed
qed
qed
qed
qed

RHS: Lemmas

lemma functional [right]:
exists-trace
"(V H1 HZ2 #i #j.
((Setup( H1 ) @ #i) A (Setup( H2 ) @ #j)) = (#i = #j)) A
(3 #k #n D. (DFin( ) @ #k) A (SC 'Human', D ) @ #n))"
by sorry

Diff-Lemmas

lemma Observational_equivalence:
rule-equivalence
case Rule_ChanIn_S
backward-search
case LHS
step( simplify )
step( solve( !Sec( $SA, $B, xn, x ) Peo #i ) )
case ChanQut_S_case_1
step( solve( !Sec( SH, SA, 'vote', Svotel ) Po #vr.3 ) )
case ChanQut_S_case_1

Case: pub
Y
In{ Svote1 ) | Fr( ~vote2.1) In{ Svote1.2) | Fr( ~vote2)
H “Human' o6 ‘"Human' ),
S e i S 55 ). SRSt Hoiman' SA £5.1).
Dm‘wm'.“h Devicel Human', SA),
Ruled( - PoTolEX. ote', SA). Yeemaer POTOIEY Vol $A).
Human' noGet, Vole'). Haman, roGer. Vote').
DitProtoSetup( )] DaPressSety ||
D0($A, D0 50($S, 'S0 Haman, Vota! _DO($A. D 0, .50($5.1,'. 0 Human', Vo',
RSILDE | PSR | M i et
WHK( Human', Vo', ~voi2)
. A . #v15 : H_send_SSN[Send( Human', Vote', ~vote2 ).
o) D Tt > T

DMIProtcH_send_Sdm{ )

Out_S( Human', SA, Vote', ~vote2 )

Out_S{ Human', SA, Vole', ~vote2 )

@ B

1Sec( Human', $A, Vote', ~vote2 )

In{ Svote1.1) | Fr(—vom22)

#ve2 : SetvpiSensx

Rolos| Humar, SA. $8),
Ruiod( Human', naTelEx’, ose', SA),
' noGet, Vote'),

Rule3( Human',
DftProtoSetup( )]

)

ISec{ Human', SA, Vote', ~vote2 )

#.3 : Chanin_S{Chanin_S( Human', $A, Vole', ~vote2 ),
D#ProtoChanin_S( )]

P,

I In_S( Human', $A, Vote', ~vote2 )}

| )‘o&_wa?&

HK( Human', ‘vote',
)

AgSUDO( SA. D_0, <Human', $B>) | In_S{ Human', SA, Vote, ~vote2 )

ot 50&\(). .

Out_S(SA. $8. vote', <Human', ~vole2> )

Out_S{ $A, $B. ‘vote', <Human', ~vote2> )
v ChanOut amq_ssmmmum.-mmy

1Sec( SA, $8, Vote', <Human', ~vole2> )

1Sec( SA, $B. vote', <Human', ~vole2> )
#i - Chanin_S{Chanin_S{$A. $8. Vote', <Human', ~vole2> ).
DAtProteChanin_S{ )]

In_S($A, $B, vote', <Human', ~vote2> )

proof type: RuleEquivalence
current rule: ProtoChanin_S

svstem:



Protocol Specification Example

Alice & Bob Protocol rules
specification
[ Fr(n) ] — [ AgSt(n) ]
A: fresh(n) -
A— B n [ AgSt(n) ] —> [ Out(n) ]
R(n)

In(n) | —
Role specitication of A (o) ]

Adversary rules (simplified)

[ ]| — [Fr(n) ] IK(n) ] — [ In(n) ]

L IK(N), 'K(M) ] — [ IK( pair(n,m) ) ]
] —> [ IK($X) ] ($x: public term)




Protocol Execution Example

State Term Rewriting Rule Instantiation Trace
: (1 —> [Fr(n) ] :SBecifi;d rules:
[ Fr(~1) ] | — [ Fr(n) ]
[ Fr(n) ] —> [AgSUN)]  [Fr(n)] — [ AgSt(n) ]
[ AgSH(~1)] S(n) AgSt(n) ] — [ Out(n) ]
[AgStn)] —> [Out(n)] [Out(n) ] — [ K(n) ] 5(~1)
[Out(~1)] | <(n) [ IK(n) 1 —> [ In(n) ]
 [Out(n)] — ['K(n)] K(~1)
[ IK(~1) ]
| [ IK(n) ] — [In(n)] [ IK(~1) ] — [In(~1)]
[K(=1). 2 A1)
n=11 {1 = (] [In()] — [] A1)

Linear vs persistent facts 10



Communication Channels

Authentic e—o, confidential o—e and secure e—e
channel rules are used to restrict capabillities of
Dolev-Yao adversary.

Example: Confidential channel rules

K’—\ $ sign: public term.

[ SndC($A $B,m) ] —> [ IConf($B)m) Agent names are
public knowledge.

[ 1Conf($B,m), IK($A) ] —> [ RcvC($A,$B,m) ]

[ IK(<$A,$B,m>) | —> [ RcvC($A,$B,m) |
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Security Properties

Set of all traces - Set of all traces -

Protocol

Protocol

Protocol does not satisfy

security property. Protocol satisfies security property.
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Confidentiality

It mis claimed to be secret, then the adversary does not
learn m.

Set of traces:
Y m # #. Secret(m)@/ = not K(m@
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Authentication Properties: Recent Aliveness

Set of all traces

No action of B no recent aliveness

Action(A)

Action(A)

Action of B occurs between two events of A.



Authentication Properties

Entity Authentication: Recent aliveness of an entity H,
with respect to verifier (remote server S).

Device Authentication: Recent aliveness of a device D.
We generally assume exclusive access of human H to D.

Message Authentication: If verifier claims that H has
sent m, then H has indeed sent m.
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Trace Restrictions

Exclude traces that violate the specitication.

Set of all traces -

Protocol Only traces in intersection

are considered.

Excluded traces

Example: A trusted agent was not previously dishonest.

Set of traces:
V A # #. (Trusted(A)@/ A Dishonest(A)@j) = i<
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Modelling Humans

« Humans can communicate over provided interfaces.
agent, type, message

N

 Human knowledge is modelled with 'HK(H,t,m) facts.
E.g.: 'HK(H, pw’,p) means human H knows password p.

e Humans can concatenate and split messages:
CIHK(H, t1,m1), THK(H,t,m2) 1 — [ THK(H, <t to>,<my,me>) |
| — [ 'HK(H, t1,mn), THK(H, to,my2) |

HK(H, <t B>, <mi,me>)

(simplified rules)



Overview

1. Security protocol model
2. Modelling Human Error

3. Applications
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Modelling Human kError

 Users don’t know protocol specitications

* Mistakes are made, even experts slip up
* We are susceptible to social engineering

* SO how should we analyze security of systems
in view of human errors”?

Definition

A human error in a protocol execution is any deviation
of a human from his or her role specification.
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Two Classes of Human Error

* Distinguish between slips and lapses by skilled
users and mistakes by inexperienced users.

* Model slips and lapses: Allow an infallible agent to
make a small number of mistakes.

* Model rule-based behaviour:
Allow for arbitrary behaviour of
an untrained agent up to a few
simple rules (guidelines).
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Infallible vs Fallible Humans

- Infallible human follows

- Fallible human may deviate

protocol specification. Set of all traces -

from protocol specification.

- Fallible humans give rise to

more system behaviours
than the infallible human.
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Comparing Specific Errors

Partial order of human errors by comparing sets of
induced traces.

Set of all traces -

Error 2

Error 1
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Two Classes of Human Error

soullepINgy) —

Skilled Humans Inexperienced Humans

Arrows indicate trace-set containment
(node at arrowhead contains more behaviors than node at tail)



Untrained Humans

We focus on this class

° They are ignorant of and may deviate Untrained

arbitrarily from protocol specification.

Inexperienced Humans

* They accept any message received and send any message requested.

[ In(<tag,msg>) | — [ 'HK(H,tag,msg) ]
[ 'HK(H,tag,msg) ] — [ Out(<tag,msg>) |

(Trace labels omitted.)

* But they can be trained, given guidelines!
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Guidelines

Set of all traces -

Guidelines are modelled by trace restrictions.




Exem p‘ary NoTell(H,t)
G u I d e‘ I r] eS ‘ NoTellExcept(H,t,D)

X
*:D/

SN®

* NoTell(H, tag):
VY m # #. NoTell(H,tag)@/ = not Snd(H,<tag,m>)@,

Human H does not send information of type tag to anyone.
E.g.: Never reveal your private key.

* NoTellExcept(H, tag,D):
Human H does not send information of type tag to
anyone except D.
E.g.: Only enter your password into your own device.



Exemplary ™7 —%

GIUIde‘IﬂeS ” |Compare(H,t) ‘ o t’?

* NoGet(H,tag): Human H rejects information of type
tag tfrom everyone.
E.g.: Never click on links in emails.

* ICompare(H,tag): Human H always compares
received information of type tag with information in
his initial knowledge.

E.g.: Always check the website's URL.



Concrete example — ebanking

Login with the Access Card and card reader
Access the desired online service via ubs.com/online and initiate the login process
(self-authorization).

1. Activate the card reader by inserting
the Access Card.

2. Enter your PIN and press [N .

3. Enter your contract number on the login page Login
and click Next.

4. Enter the six-digit code displayed on the login S ————
page into the card reader and press 4N . .

B 1 2 3 4 5 6

Security note: The login number displayed
by UBS always has six digits. If it has fewer
digits, this could be a case of attempted fraud.

Contact the support team as soon as possible
in this case.

5. Enter the eight-digit code from the card
reader on the login page and click Login.




Overview

1. Security protocol model
2. Modelling Human Error

3. Applications
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Phone-based Authentication

 Cronto: Scan a code on platform, decrypted by mobile
device, enter code + password on platform

* Google 2-step: login/password + SMS
* MP-Auth: Enter password into mobile device
* One-time passwords over SMS: single-factor authentication

* Phoolproof: choose server on device, device-server
communication, then enter password on the platform

 Sound-Proof: ambient noise recorded by platform and mobile
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MP-Auth™ without Human Role

Server S

D knows: H, pk(S), pw
S knows: H, sk(S), pw

S: fresh(rs) /

fresh session, no repla
S—D:S, rs a

Device D

D: fresh(r [}y-onlyScan read this T
N — S: {rD}pk (S), {h(l’s), |_|’ pW}h(rs,rD) shared key: onlngmdS

can compute this
S — D: {h rD }h rs,r[.)) D wwust have sent this
S must have sent this

satisfies confidentiality & authenticity of h(rs, rp)

. (*) Mohammad Mannan and Paul C. van Oorschot. Leveraging personal devices for stronger password
authentication from untrusted computers. Journal of Computer Security, 19(4):703-750, 2011.
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MP-Auth without Human Role

Server S
D knows: H, pk(S), pw P'atform — "
S knows: H, sk(S), pw @/ E
I

S: fresh(rs)
S->P - D: S, rs DDeviceD
D: fresh(rp)

D = P = S: {rp}pks), {h(rs), H, pw}h(rs,m)

S = P = D: {h(rp)}n(rs,m)

D: trusted device, P: untrusted platform "
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MP-Auth

Human H Platform P Server S
H knows: D, P, S, pw
D knows: H, pk(S) ‘ ‘
S knows: H, sk(S), pw
|—| — P: S securechanvnel
P - S: ‘start DDeVmD
S — P — D: fresh(rs) . S, rs
) e—e H: S
He—e [): pw, H
D = P = S: fresh(rp) . {ro}pk(s), {h(rs), H, pw}n(rs,ro)

S = P — D: {h(rp)}h(rs,m)
D e—e H: ‘success’
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MP-Auth

Human H Server S
H knows: D, P, S, pw
D knows: H, pk(S) ‘ — ‘
S knows: H, sk(S), pw
H— S: ‘start
S — D: fresh(rs) . S, rs D |
D °o—o H: S Device D
He—e D pw, H
D — S: fresh(rp) . {ro}okes), {h(rs), H, pw}n(rs,m)

S = D: {h(rp)}h(rs,m)
D e—e H: ‘success’

Modelling untrusted platform with insecure channels.
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Comﬁ/ﬁg? one hased
Aut P orﬂérg?oco
Entlty Authentlcatlon | Dewce Authentlcatlon

With
Gwdellnes

With

Infalllble Untrained : Guudelmes

Infalllble Untramed

Guideline:

.........................................................................................

Y Guideline:
NoTellExcept(H, pw’,’D’)

Adversary impersonates H and D to server,
after untrained H enters password on corrupted platforwm.



Entity Authentication vs
Message Authentication

* Both are important.

E.g., message (origin) authentication used to
authenticate transactions in online banking.

e Some entity authentication protocols can be
extended for message authentication

Extensions not always possible or straightforward
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MP-Auth Message
Authentication

H knows: D, P, S, m

D knows: H, pk(S), S, k «— derived from shared key
S knows: sk(S), H, k established in login protocol

H—S: m “please wire 10€ to account #123"

S = D: fresh(rs) . {m, rs}k confirm: 10€ to =123
D e—e H: m transfer 10€ to #1237

H e—e D: ‘OK

D — S: {h(Mmrs)}k confirmed: 10€ to #123

/

replay protection
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MP-Auth Message
Authentication Analysis

 MP-Auth MA with infallible human

e MP-Auth MA with untrained human

H presses OK without reading display,
confirms message m sent by adversary.

* Guidelines NoTell, NoTellExcept, NoGet, and
|Compare insufficient to prevent attack.
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Improved MP-Auth Message
Authentication

H knows: D, P, S, m
D knows: H, pk(S), S, k
S knows: sk(S), H, k

H—S: m
S = D: fresh(rs) . {m, rsl«

D e—e H: fresh(vc) . v, m  H wmust read display
He—e D vC in order to proceed

D = S: {h(m,rs)}k

Satisfies message authentication with human
following ICompare guideline.




Google-2-step
with message authentication
H : knows(P,D,S,pw,m,idH)
D : knows(H)
S : knows(H,pw,D,idH)

H — P:S,|idH, pw < enters name/password
Po—eS:idH, m + message to authenticate

So—eD: fresh

De—oe H: — gets code on device (SMS)

H - P: — code entered on platform
P — S . pW M « and forwarded to server

Authenticity of m from H to S?



Authenticity In
Google-2-step

For an infallible human: verified.

For a fallible human: falsified.
Human does not know he has to compare
message on phone with the m that he sent.

For a human with rule ICompare(H, m’): verified.



Comparison: Message
Authentication

Infallible Untrained? With Guidelines .
s a Guideline:

Cronto MA : v X g« oparetimg
"""""" Google2Step* | v . x v */,
"""""" OTPoversmMs* | v  x v /
"""""""" MP-AuthVC | v X v
"""""""" MP-AuthMA | v X X
"""""""" Phoolproof* | v v
"""""""" Sound-Proof | X

* Our extension based on HISP design guidelines.



Conclusion

e First formal model of human errors in security protocols,
providing systematic approach for reasoning about human errors

* Applications to authentication protocols:
> Finding attacks arising from human errors.

- ldentitying protocol techniques that provide effective
protection against various mistakes.

- Ranking protocols WRT their robustness to human errors
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Future Work

What are good guidelines”

Verify protocols in combination of skilled and
untrained human error models.

Apply the model to improve security in the real world:
* Improve system and protocol design.
* |dentify critical user actions that must be monitored.

* |dentify critical concepts to teach to untrained users.
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Server Communication
D.B., Sasa Radomirovic, Michael Schlapfer, CSF 2015.



Details
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Skilled Humans

« Skilled humans follow protocol specification, may
make a small number of mistakes (slips & lapses).

» Slips & lapses: Inattentiveness, routine behaviour
in an unusual situation. E.g, clicking “OK” w/o
reading an alert.

* Modelled by adding failure rules to protocol
model.
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Specitying Skilled Human Role

Skilled Human H follows protocol specification, keeps
state information: AgSt(H,step,knownlerms)

Pattern for receiving messages:
AQSt(H,s1,k), Rev(H,<t,m>) | —
[ THK(H,t,m), AgSt(H,s2,<k,m>) |

Pattern for sending messages:
- AgSt(H,s1,<k,m>), 'HK(H,t,m) ] —

[ Snd(H,<t,m>), AgSt(H,s2,<k,m>) |

(Trace labels omitted.)



Example of a Fallure Rule
(Skilled Human Error)

Message confusion: Human H intends to send
message mi1, sends instead message me.

[Snd(H,<t,m1>), IHK(H, f,m2), Fail(H,'msc’)] —
[ SNd(H,<t,me>) |

Fail fact: allows control over type and number of errors.

(Trace labels omitted.)



Related Work

Beckert and Beuster (2006), RukSénas et al. (2008)
formally model humans and human error in human-
machine interfaces.

Their models correspond to our skilled human approach,
but capture only finite scenarios.

We model human error in unbounded protocol executions.

A set of tailure rules for skilled human agents in security
protocols are given by Schlapfer (2016).

Our untrained human approach is new.



HISP Channel Assumptions

Authentic Channel:
[Snda(A, B, m)]-{ Snda(A, B, m) |- [!Auth(A, m), Out({A, B, m))]
[!Auth(A, m),In(B)]- Rcva(A, B, m) |- [Reva(A, B, m)]

Confidential Channel:

Sndc(A, B, m)]-{ Sndc(A, B, m) |- [!Conf(B, m)]
Conf(B, m),In(A)]{ Revc(A, B, m) |- [Revc (A, B, m)]
In((A, B, m))]-{ Revc(A, B, m) |- [Revc (A, B, m)]

Secure Channel:
[Snds (A, B, m)]- Snds(A, B, m) | [!Sec(A, B, m)]
[!Sec(A, B, m)|- Rcvs(A, B, m) |+ [Revs(A, B, m)]
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