Human Errors in Security
Protocols

David Basin
joint work with SaSa Radomirovi¢ and Lara Schmid

Institute of Information Security

ETH-urich

Recap Security Protocols

We have defined

* the Dolev-Yao adversary
 communicating agents that follow a role specification

* and the security properties desired

2

What we have not seen

M

\/

We glossed over that

 a human is one of the communicating parties,
* humans have limited computational abilities, and

* they are error-prone.

3

How can we achieve secure communication
between a human and a remote server?

new problem Polev-Yao:
under control

 Examples: Online Banking, Internet Voting,
Electronic Tax Returns, ...

e How do we model and reason about Iinteraction
between humans and computers?

4

How can we achieve secure communication
between a human and a remote server?

ﬁ)gﬁ

additional problewm:
comprowmised platform

e |f platform is compromised: no useful secure
communication is possible.

* A trusted device is necessary.

Human H Platform P Server S

For which kinds of devices is
() secure communication possible?

(A Complete Characterization of Secure Human-Server
Communication, CSF 2015)

- S/

Device D Focus In this talk on human errors
(Modeling Human Errors in Security Protocols, CSF 2016)

Possible “devices’:

http://people.inf.ethz.ch/basin/pubs/human-csf15.pdf
http://people.inf.ethz.ch/basin/pubs/human-csf15.pdf

Overview

1. Security protocol model
2. Modelling Human Error

3. Applications

Security Protocol Model — Tamarin

« Symbolic formal model specitied using multiset rewriting

 Dolev-Yao adversary controlling communication network.

e Possible executions
modeled by traces

 Tool support

Running Tuuey 1.0.0

Proof scripts

lemma functional [left]:
exists-trace
"(V H1 H2 #i #j.
((Setup(H1) @ #i) A (Setup(HZ) @ #j)) = (#i = #3)) A
(3 #k #n D. (Dfin() @ #k) A (SC 'Human', D) €@ #n))"
simplify
solve(AgSt_DA($0, 'D_@', <SH, $S>) Pe #k)
case Setup
solve(In_SC $H, SD, 'vote', Svotel) b1 #k)
case ChanIn_S
solve(AgSt_S@($S.1, 'S_@', <'Human', $D.1>
D) Pa#n)
case Setup
solve(In_SC S0, $S, 'vote',
<'Human', Svotel.l>
) Ps#n)
case ChanIn_S
solve(!Sec("Human', $D, 'vote', Svotel
) Pe #ivr.1)
case ChanQut_S_case_1
solve(!SecC $D, $S, 'vote',
<'Human', $votel.l>
) Pe #vr.2)
case ChanQut_S_case_1
SOLVED // trace found

qed
qed
qed
qed
qed
qed

RHS: Lemmas

lemma functional [right]:
exists-trace
"(V H1 HZ2 #i #j.
((Setup(H1) @ #i) A (Setup(H2) @ #j)) = (#i = #j)) A
(3 #k #n D. (DFin() @ #k) A (SC 'Human', D) @ #n))"
by sorry

Diff-Lemmas

lemma Observational_equivalence:
rule-equivalence
case Rule_ChanIn_S
backward-search
case LHS
step(simplify)
step(solve(!Sec($SA, $B, xn, x) Peo #i))
case ChanQut_S_case_1
step(solve(!Sec(SH, SA, 'vote', Svotel) Po #vr.3))
case ChanQut_S_case_1

Case: pub
Y
In{ Svote1) | Fr(~vote2.1) In{ Svote1.2) | Fr(~vote2)
H “Human' o6 ‘"Human'),
S e i S 55). SRSt Hoiman' SA £5.1).
Dm‘wm'.“h Devicel Human', SA),
Ruled(- PoTolEX. ote', SA). Yeemaer POTOIEY Vol $A).
Human' noGet, Vole'). Haman, roGer. Vote').
DitProtoSetup()] DaPressSety ||
D0($A, D0 50($S, 'S0 Haman, Vota! _DO($A. D 0, .50($5.1,'. 0 Human', Vo',
RSILDE | PSR | M i et
WHK(Human', Vo', ~voi2)
. A . #v15 : H_send_SSN[Send(Human', Vote', ~vote2).
o) D Tt > T

DMIProtcH_send_Sdm{)

Out_S(Human', SA, Vote', ~vote2)

Out_S{ Human', SA, Vole', ~vote2)

@ B

1Sec(Human', $A, Vote', ~vote2)

In{ Svote1.1) | Fr(—vom22)

#ve2 : SetvpiSensx

Rolos| Humar, SA. $8),
Ruiod(Human', naTelEx’, ose', SA),
' noGet, Vote'),

Rule3(Human',
DftProtoSetup()]

)

ISec{ Human', SA, Vote', ~vote2)

#.3 : Chanin_S{Chanin_S(Human', $A, Vole', ~vote2),
D#ProtoChanin_S()]

P,

I In_S(Human', $A, Vote', ~vote2)}

|)‘o&_wa?&

HK(Human', ‘vote',
)

AgSUDO(SA. D_0, <Human', $B>) | In_S{ Human', SA, Vote, ~vote2)

ot 50&\(). .

Out_S(SA. $8. vote', <Human', ~vole2>)

Out_S{ $A, $B. ‘vote', <Human', ~vote2>)
v ChanOut amq_ssmmmum.-mmy

1Sec(SA, $8, Vote', <Human', ~vole2>)

1Sec(SA, $B. vote', <Human', ~vole2>)
#i - Chanin_S{Chanin_S{$A. $8. Vote', <Human', ~vole2>).
DAtProteChanin_S{)]

In_S($A, $B, vote', <Human', ~vote2>)

proof type: RuleEquivalence
current rule: ProtoChanin_S

svstem:

Protocol Specification Example

Alice & Bob Protocol rules
specification
[Fr(n)] — [AgSt(n)]
A: fresh(n) -
A— B n [AgSt(n)] —> [Out(n)]
R(n)

In(n) | —
Role specitication of A (o)]

Adversary rules (simplified)

[]| — [Fr(n)] IK(n)] — [In(n)]

L IK(N), 'K(M)] — [IK(pair(n,m))]
] —> [IK($X)] ($x: public term)

Protocol Execution Example

State Term Rewriting Rule Instantiation Trace
: (1 —> [Fr(n)] :SBecifi;d rules:
[Fr(~1)] | — [Fr(n)]
[Fr(n)] —> [AgSUN)] [Fr(n)] — [AgSt(n)]
[AgSH(~1)] S(n) AgSt(n)] — [Out(n)]
[AgStn)] —> [Out(n)] [Out(n)] — [K(n)] 5(~1)
[Out(~1)] | <(n) [IK(n) 1 —> [In(n)]
 [Out(n)] — ['K(n)] K(~1)
[IK(~1)]
| [IK(n)] — [In(n)] [IK(~1)] — [In(~1)]
[K(=1). 2 A1)
n=11 {1 = (] [In()] — [] A1)

Linear vs persistent facts 10

Communication Channels

Authentic e—o, confidential o—e and secure e—e
channel rules are used to restrict capabillities of
Dolev-Yao adversary.

Example: Confidential channel rules

K’—\ $ sign: public term.

[SndC($A $B,m)] —> [IConf($B)m) Agent names are
public knowledge.

[1Conf($B,m), IK($A)] —> [RcvC($A,$B,m)]

[IK(<$A,$B,m>) | —> [RcvC($A,$B,m) |

11

Security Properties

Set of all traces - Set of all traces -

Protocol

Protocol

Protocol does not satisfy

security property. Protocol satisfies security property.

12

Confidentiality

It mis claimed to be secret, then the adversary does not
learn m.

Set of traces:
Y m # #. Secret(m)@/ = not K(m@

13

Authentication Properties: Recent Aliveness

Set of all traces

No action of B no recent aliveness

Action(A)

Action(A)

Action of B occurs between two events of A.

Authentication Properties

Entity Authentication: Recent aliveness of an entity H,
with respect to verifier (remote server S).

Device Authentication: Recent aliveness of a device D.
We generally assume exclusive access of human H to D.

Message Authentication: If verifier claims that H has
sent m, then H has indeed sent m.

15

Trace Restrictions

Exclude traces that violate the specitication.

Set of all traces -

Protocol Only traces in intersection

are considered.

Excluded traces

Example: A trusted agent was not previously dishonest.

Set of traces:
V A # #. (Trusted(A)@/ A Dishonest(A)@j) = i<

16

Modelling Humans

« Humans can communicate over provided interfaces.
agent, type, message

N

 Human knowledge is modelled with 'HK(H,t,m) facts.
E.g.: 'HK(H, pw’,p) means human H knows password p.

e Humans can concatenate and split messages:
CIHK(H, t1,m1), THK(H,t,m2) 1 — [THK(H, <t to>,<my,me>) |
| — ['HK(H, t1,mn), THK(H, to,my2) |

HK(H, <t B>, <mi,me>)

(simplified rules)

Overview

1. Security protocol model
2. Modelling Human Error

3. Applications

18

Modelling Human kError

 Users don’t know protocol specitications

* Mistakes are made, even experts slip up
* We are susceptible to social engineering

* SO how should we analyze security of systems
in view of human errors”?

Definition

A human error in a protocol execution is any deviation
of a human from his or her role specification.

19

Two Classes of Human Error

* Distinguish between slips and lapses by skilled
users and mistakes by inexperienced users.

* Model slips and lapses: Allow an infallible agent to
make a small number of mistakes.

* Model rule-based behaviour:
Allow for arbitrary behaviour of
an untrained agent up to a few
simple rules (guidelines).

20

Infallible vs Fallible Humans

- Infallible human follows

- Fallible human may deviate

protocol specification. Set of all traces -

from protocol specification.

- Fallible humans give rise to

more system behaviours
than the infallible human.

21

Comparing Specific Errors

Partial order of human errors by comparing sets of
induced traces.

Set of all traces -

Error 2

Error 1

22

Two Classes of Human Error

soullepINgy) —

Skilled Humans Inexperienced Humans

Arrows indicate trace-set containment
(node at arrowhead contains more behaviors than node at tail)

Untrained Humans

We focus on this class

° They are ignorant of and may deviate Untrained

arbitrarily from protocol specification.

Inexperienced Humans

* They accept any message received and send any message requested.

[In(<tag,msg>) | — ['HK(H,tag,msg)]
['HK(H,tag,msg)] — [Out(<tag,msg>) |

(Trace labels omitted.)

* But they can be trained, given guidelines!

24

Guidelines

Set of all traces -

Guidelines are modelled by trace restrictions.

Exem p‘ary NoTell(H,t)
G u I d e‘ I r] eS ‘ NoTellExcept(H,t,D)

X
*:D/

SN®

* NoTell(H, tag):
VY m # #. NoTell(H,tag)@/ = not Snd(H,<tag,m>)@,

Human H does not send information of type tag to anyone.
E.g.: Never reveal your private key.

* NoTellExcept(H, tag,D):
Human H does not send information of type tag to
anyone except D.
E.g.: Only enter your password into your own device.

Exemplary ™7 —%

GIUIde‘IﬂeS ” |Compare(H,t) ‘ o t’?

* NoGet(H,tag): Human H rejects information of type
tag tfrom everyone.
E.g.: Never click on links in emails.

* ICompare(H,tag): Human H always compares
received information of type tag with information in
his initial knowledge.

E.g.: Always check the website's URL.

Concrete example — ebanking

Login with the Access Card and card reader
Access the desired online service via ubs.com/online and initiate the login process
(self-authorization).

1. Activate the card reader by inserting
the Access Card.

2. Enter your PIN and press [N .

3. Enter your contract number on the login page Login
and click Next.

4. Enter the six-digit code displayed on the login S ————
page into the card reader and press 4N . .

B 1 2 3 4 5 6

Security note: The login number displayed
by UBS always has six digits. If it has fewer
digits, this could be a case of attempted fraud.

Contact the support team as soon as possible
in this case.

5. Enter the eight-digit code from the card
reader on the login page and click Login.

Overview

1. Security protocol model
2. Modelling Human Error

3. Applications

29

Phone-based Authentication

 Cronto: Scan a code on platform, decrypted by mobile
device, enter code + password on platform

* Google 2-step: login/password + SMS
* MP-Auth: Enter password into mobile device
* One-time passwords over SMS: single-factor authentication

* Phoolproof: choose server on device, device-server
communication, then enter password on the platform

 Sound-Proof: ambient noise recorded by platform and mobile

30

MP-Auth™ without Human Role

Server S

D knows: H, pk(S), pw
S knows: H, sk(S), pw

S: fresh(rs) /

fresh session, no repla
S—D:S, rs a

Device D

D: fresh(r [}y-onlyScan read this T
N — S: {rD}pk (S), {h(l’s), |_|’ pW}h(rs,rD) shared key: onlngmdS

can compute this
S — D: {h rD }h rs,r[.)) D wwust have sent this
S must have sent this

satisfies confidentiality & authenticity of h(rs, rp)

. (*) Mohammad Mannan and Paul C. van Oorschot. Leveraging personal devices for stronger password
authentication from untrusted computers. Journal of Computer Security, 19(4):703-750, 2011.

31

MP-Auth without Human Role

Server S
D knows: H, pk(S), pw P'atform — "
S knows: H, sk(S), pw @/ E
I

S: fresh(rs)
S->P - D: S, rs DDeviceD
D: fresh(rp)

D = P = S: {rp}pks), {h(rs), H, pw}h(rs,m)

S = P = D: {h(rp)}n(rs,m)

D: trusted device, P: untrusted platform "

32

MP-Auth

Human H Platform P Server S
H knows: D, P, S, pw
D knows: H, pk(S) ‘ ‘
S knows: H, sk(S), pw
|—| — P: S securechanvnel
P - S: ‘start DDeVmD
S — P — D: fresh(rs) . S, rs
) e—e H: S
He—e [): pw, H
D = P = S: fresh(rp) . {ro}pk(s), {h(rs), H, pw}n(rs,ro)

S = P — D: {h(rp)}h(rs,m)
D e—e H: ‘success’

33

MP-Auth

Human H Server S
H knows: D, P, S, pw
D knows: H, pk(S) ‘ — ‘
S knows: H, sk(S), pw
H— S: ‘start
S — D: fresh(rs) . S, rs D |
D °o—o H: S Device D
He—e D pw, H
D — S: fresh(rp) . {ro}okes), {h(rs), H, pw}n(rs,m)

S = D: {h(rp)}h(rs,m)
D e—e H: ‘success’

Modelling untrusted platform with insecure channels.

34

Comﬁ/ﬁg? one hased
Aut P orﬂérg?oco
Entlty Authentlcatlon | Dewce Authentlcatlon

With
Gwdellnes

With

Infalllble Untrained : Guudelmes

Infalllble Untramed

Guideline:

...

Y Guideline:
NoTellExcept(H, pw’,’D’)

Adversary impersonates H and D to server,
after untrained H enters password on corrupted platforwm.

Entity Authentication vs
Message Authentication

* Both are important.

E.g., message (origin) authentication used to
authenticate transactions in online banking.

e Some entity authentication protocols can be
extended for message authentication

Extensions not always possible or straightforward

36

MP-Auth Message
Authentication

H knows: D, P, S, m

D knows: H, pk(S), S, k «— derived from shared key
S knows: sk(S), H, k established in login protocol

H—S: m “please wire 10€ to account #123"

S = D: fresh(rs) . {m, rs}k confirm: 10€ to =123
D e—e H: m transfer 10€ to #1237

H e—e D: ‘OK

D — S: {h(Mmrs)}k confirmed: 10€ to #123

/

replay protection

37

MP-Auth Message
Authentication Analysis

 MP-Auth MA with infallible human

e MP-Auth MA with untrained human

H presses OK without reading display,
confirms message m sent by adversary.

* Guidelines NoTell, NoTellExcept, NoGet, and
|Compare insufficient to prevent attack.

38

Improved MP-Auth Message
Authentication

H knows: D, P, S, m
D knows: H, pk(S), S, k
S knows: sk(S), H, k

H—S: m
S = D: fresh(rs) . {m, rsl«

D e—e H: fresh(vc) . v, m H wmust read display
He—e D vC in order to proceed

D = S: {h(m,rs)}k

Satisfies message authentication with human
following ICompare guideline.

Google-2-step
with message authentication
H : knows(P,D,S,pw,m,idH)
D : knows(H)
S : knows(H,pw,D,idH)

H — P:S,|idH, pw < enters name/password
Po—eS:idH, m + message to authenticate

So—eD: fresh

De—oe H: — gets code on device (SMS)

H - P: — code entered on platform
P — S . pW M « and forwarded to server

Authenticity of m from H to S?

Authenticity In
Google-2-step

For an infallible human: verified.

For a fallible human: falsified.
Human does not know he has to compare
message on phone with the m that he sent.

For a human with rule ICompare(H, m’): verified.

Comparison: Message
Authentication

Infallible Untrained? With Guidelines .
s a Guideline:

Cronto MA : v X g« oparetimg
"""""" Google2Step* | v . x v */,
"""""" OTPoversmMs* | v x v /
"""""""" MP-AuthVC | v X v
"""""""" MP-AuthMA | v X X
"""""""" Phoolproof* | v v
"""""""" Sound-Proof | X

* Our extension based on HISP design guidelines.

Conclusion

e First formal model of human errors in security protocols,
providing systematic approach for reasoning about human errors

* Applications to authentication protocols:
> Finding attacks arising from human errors.

- ldentitying protocol techniques that provide effective
protection against various mistakes.

- Ranking protocols WRT their robustness to human errors

43

Future Work

What are good guidelines”

Verify protocols in combination of skilled and
untrained human error models.

Apply the model to improve security in the real world:
* Improve system and protocol design.
* |dentify critical user actions that must be monitored.

* |dentify critical concepts to teach to untrained users.

44

L Iterature

* Modeling Human Errors in Security Protocols
D.B., Sasa Radomirovic, Lara Schmid, CSF 2016.

A Complete Characterisation of Secure Human-

Server Communication
D.B., Sasa Radomirovic, Michael Schlapfer, CSF 2015.

Details

46

Skilled Humans

« Skilled humans follow protocol specification, may
make a small number of mistakes (slips & lapses).

» Slips & lapses: Inattentiveness, routine behaviour
in an unusual situation. E.g, clicking “OK” w/o
reading an alert.

* Modelled by adding failure rules to protocol
model.

47

Specitying Skilled Human Role

Skilled Human H follows protocol specification, keeps
state information: AgSt(H,step,knownlerms)

Pattern for receiving messages:
AQSt(H,s1,k), Rev(H,<t,m>) | —
[THK(H,t,m), AgSt(H,s2,<k,m>) |

Pattern for sending messages:
- AgSt(H,s1,<k,m>), 'HK(H,t,m)] —

[Snd(H,<t,m>), AgSt(H,s2,<k,m>) |

(Trace labels omitted.)

Example of a Fallure Rule
(Skilled Human Error)

Message confusion: Human H intends to send
message mi1, sends instead message me.

[Snd(H,<t,m1>), IHK(H, f,m2), Fail(H,'msc’)] —
[SNd(H,<t,me>) |

Fail fact: allows control over type and number of errors.

(Trace labels omitted.)

Related Work

Beckert and Beuster (2006), RukSénas et al. (2008)
formally model humans and human error in human-
machine interfaces.

Their models correspond to our skilled human approach,
but capture only finite scenarios.

We model human error in unbounded protocol executions.

A set of tailure rules for skilled human agents in security
protocols are given by Schlapfer (2016).

Our untrained human approach is new.

HISP Channel Assumptions

Authentic Channel:
[Snda(A, B, m)]-{ Snda(A, B, m) |- [!Auth(A, m), Out({A, B, m))]
[!Auth(A, m),In(B)]- Rcva(A, B, m) |- [Reva(A, B, m)]

Confidential Channel:

Sndc(A, B, m)]-{ Sndc(A, B, m) |- [!Conf(B, m)]
Conf(B, m),In(A)]{ Revc(A, B, m) |- [Revc (A, B, m)]
In((A, B, m))]-{ Revc(A, B, m) |- [Revc (A, B, m)]

Secure Channel:
[Snds (A, B, m)]- Snds(A, B, m) | [!Sec(A, B, m)]
[!Sec(A, B, m)|- Rcvs(A, B, m) |+ [Revs(A, B, m)]

51

